
CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 1

CSCI 3100 Software Engineering

Project Requirement Specification

Last Update: 27th Feb 2024

1. Objective

The objective of this course project is to practice what you are learning in this CSCI3100 Software

Engineering course by specifying, designing, implementing, testing, and documenting a typical

software engineering project (e.g., a web-based client-server application, or a software game

application). The project serves as a vehicle to sharpen your knowledge in Software Engineering

and to develop your relevant skills. This course project also introduces students to teamwork and

project management, which are keys for successful large-scale software development. Besides, you

can take the project opportunity to develop a modern software product (such as a mobile-web

application), as if you are working for a major high-tech firm or founding an IT start-up company.

Generally, the project consists of two parts: (1) software engineering project documentation, and (2)

software production (including specification, design, coding, and demonstration). On the one hand,

the documentation reflects the process of your designing, refining, and testing your project. The

documentation is required to be conducted and submitted progressively according to the grading

criteria. On the other hand, the software production reflects how well you produce your system.

Your implementation should be managed by a GitHub repository. We will arrange a demo day at the

term end, where you will present your product on the day. Your complete code should be submitted

after the demo.

2. Project Grouping

Each project group is composed of four or five students for the whole duration of the project. Some

groups may have four members, but no group should have six or more members. All students in a

group work together on the same project based on the project requirements defined in the remainder

of this document. By now, you may have chosen group members by yourselves. If so, please visit

the front page of the course website, where there is a link for Project Group Registration. Sign up

your project group accordingly. Note that you can sign up for a group only when you have three or

more members in the group already. At the end of project grouping date (19 Jan), we will randomly

assign the remaining students to form additional groups or assign them to existing groups which

include less than 5 (i.e., 3 or 4) members. Once the group is assigned, you should remain in the

group and work with your team members closely for the entire project.

3. Project Requirements

The goal of the project is to go through the whole process of software development with software

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 2

engineering techniques. We provide four application choices. Each group can only choose one

application as the topic of the project. The whole project is composed of two parts: (1) documenting

the application, and (2) implementing the application.

3.1. Documenting the Application

You are required to use specification and design techniques (e.g., requirement analysis, DFD,

UML) taught in the lectures to provide a comprehensive documentation for your design and

implementation. In this project, you will provide four documents, a high-level design document,

a DFD specification document, a UML specification and UI design document, and a testing

document. Please refer to Appendix 3 for more details.

▪ High-Level Design Document

The high-level design document should contain two parts, i.e., project overview and system

architecture. In the project overview part, you should describe basic requirements and all

advanced features of your applications. In the system architecture part, you should describe

your vision on the techniques that you will employ in your project.

▪ DFD Specification Document

In the DFD specification document, you should use data flow diagram (DFD) techniques taught

in the class to specify your application.

▪ UML Specification and UI Design Document

In the UML specification and UI design document, you should use UMLs to describe key

components of your system. The UML technique will also be described in the class. Meanwhile,

for the UI design part, you should design several views for your application and describe the

objects and actions of the view.

▪ Testing Document

The testing document should contain two parts: (1) a test plan, and (2) multiple test cases. First,

you should describe the components covered in the testing process in your test plan. Second,

multiple detailed test cases should be described to test the key functionalities of your project.

The design of test cases includes black box testing (required) and white box testing (optional),

which will be covered in the class.

3.2. Implementing the Application

We provide four applications for your selection, i.e., a content-oriented application, a online

shopping system, and two games -- snack.io and Gobang. For each application, we provide several

basic requirements and multiple advanced functionality suggestions. The detailed application

description and requirements can be found in Appendix 1.

The basic requirements account for 70% of the implementation part of the project. While the detailed

basic requirements are different among different applications, there are still several common points.

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 3

For example, you need to provide a clear user interface (UI) for users to easily understand and use

the application. You also need to employ database techniques to store user and application data. You

are expected to implement all the basic requirements and show your implementation in your demo

presentation. We provide checklists in Appendix 2 containing the grading details of basic

requirements.

The advanced requirements account for the remaining 30% of the project. In Appendix 1, you'll find

helpful advanced suggestions for each application. Feel free to try out these features in your projects.

You're also encouraged to add as many cool and unique features as you like. For example, you could

make your application stand out by adding more specific features that users will love. You can also

consider integrating more advanced techniques in your application by integrating cloud techniques

or integrating with mobile devices.

3.3. Other requirements

When designing your application, the most important project feature to keep in mind is that the

software product you will develop should require a reasonable programming effort. No joint work

over any technical aspects of the project is allowed between any two groups/teams. Any problem

about the project requirements should be directed to the tutors through electronic mails, newsgroup

discussions, or tutorial sessions. The reason for this policy is to enforce team separation for proper

credits. This project should be considered as if there is only one single team, namely your team,

being responsible for your whole project development. No plagiarism is allowed regarding any

aspect of the project. Reusing existing designs or codes as part of your project (such as those from

the open-source projects) is allowed, but you need to attribute any reused code clearly. This requires

them to clearly attribute any code not authored by themselves at the beginning of each submitted

file. We will also employ professional tools to verify the percentage of existing codes in your project.

Note that you should not reuse existing code excessively. Your project mark will be deduced

significantly if the percentage of reused existing code is excessive.

4. Project Phases:

There are five project phases described as follows:

(1) High-Level Design Phase (2 weeks)

In this phase, each project group will prepare and submit a high-level design document to provide

high-level descriptions of the functionalities, features, and architectural design of your application.

Project introduction, architecture diagrams, and brief descriptions of the key system components

should be provided. Feedback will be provided on your high-level design, and you should consider

and possibly revise the project goals before going on to the next phase. You are required to submit

your project high-level design document by 23:59:59 of 3 February (Saturday).

(2) DFD Specification and GitHub Repository Creation Phase (3 weeks)

You need to complete two tasks in this phase. First, you need to specify your application

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 4

functionalities with data flow diagrams (DFDs). You need to specify all basic requirements and the

advanced features you want to implement in this document. Second, you will work as programmers

to implement your own design and collaborate using the git version control system. You need to get

familiar with the git version control system. At the end of this phase, you are required to 1) submit

the DFD Specification Document, and 2) create a code repository on GitHub. You should

accomplish these two tasks by 23:59:59 of 24 February (Saturday). You code repository will be

handed in by providing the URL of your GitHub repository. No implementation is required. For

more information on the git version control system and GitHub, please refer to Appendix 4.

(3) UML Specification and UI Design Phase (4 weeks)

In this phase, you should be implementing your application. We expect you to use UML diagrams

to specify your application and refine your UML diagrams during your implementation. Also, you

should provide a UI design document that describes the user interfaces of your application. You are

required to submit a UML Specification and UI Design Document by the end of this phase. The

deadline is scheduled on 23:59:59 of 23 March (Saturday).

(4) Project Demo Phase (2.5 weeks)

In this phase, you are completing your project. You will need to make a demonstration of your

complete application. Project Demo Day is scheduled on 11 April. Each group have 15 minutes to

present the application to the course instructors. Detailed project demo arrangements will be

announced later. Please pay attention to the announcement on the course website and Piazza.

(5) Testing and Final Commented Code Phase (3 weeks)

In this phase, you are expected to conduct testing on your application. You should describe the test

plan in your testing document. Detailed test cases should be included to test key components of your

application. The final code is also required. Your final code should be self-contained and working.

The code should also be commented as detailed as possible. A README should be included to

describe your code repository. You are required to prepare and submit your testing document and

final code by 23:59:59 of 4 May (Saturday).

5. Grading Criteria:

The followings are the project schedule of different phases:

Phase Deliverables Weightings Durations Due Date

0. Team Formation -- -- 19 Jan. (23:59:59)

1. High-Level Design Document 5% 2 weeks 3 Feb. (23:59:59)

2. DFD Specification Document

and GitHub Repository Creation

10%

(8%: DFD Specification

Document,

2%: GitHub Repository

Creation)

3 weeks 24 Feb. (23:59:59)

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 5

3. UML Specification and UI

Design Document

15% 4 weeks 23 Mar. (23:59:59)

4. Project Demo 60% 2.5 weeks Demo Day:

11 Apr.

5. Testing Document and Final

Commented Code

10%

(8%: Testing Document,

2%: Final Commented

Code)

3 weeks 4 May (23:59:59)

Total 100% 15 weeks

5.1. High-Level Design Document

The high-level design document should be written in text font Times New Roman and size 11. The

main body of the design document should be no more than 5 pages. Marks will be deduced if the

format requirements are not met. The document will be graded upon the clarity of the documentation.

5.2. DFD Specification Document and GitHub Repository Creation

The DFD specification document should contain both basic and advanced features of your

application. The document should be written in text font Times New Roman and size 11. The main

body of the document should be no more than 10 pages. The creation of your GitHub code

repository will be graded on the availability of your GitHub repository. The implementation of your

project is not required.

5.3. UML Specification and UI Design Document

The UML specification and UI design document should contain UML diagrams and UI design

descriptions for your application. The document should be written in text font Times New Roman

and size 11. The main body of the document should be no more than 20 pages.

5.4. Project Demo

The project demo will be graded upon the functionalities of your application. The grading criteria

are listed as follows:

▪ Basic Project Features (70%)

Different applications have different basic feature requirements. The grading of the basic

requirements is based on the checklist provided in Appendix 2. For each item in the checklist,

you can get all the marks of the item as long as you have completed its requirements.

▪ Advanced Project Features (30%)

The advanced project features will be graded on the comprehensiveness of your application and

the advanced techniques you have employed. You can show as many interesting features in the

demo as possible and your grades will be considered accordingly.

5.5. Testing Document and Final Commented Code

The testing document should contain a general test plan and detailed test cases for your application.

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 6

The document should be written in text font Times New Roman and size 11. The main body should

be no more than 15 pages. Please refer to Appendix 3 for more details. The final commented code

should be handed in by pushing the code to your GitHub repository. You should include a detailed

README on your GitHub repository describing your application and the requirements of running

your application. The code will be graded based upon the availability of the README and the

readability of your code.

Although generally, the project grade is for the whole team and will not be assigned individually to

the members, each team member must be aware that a major part of his or her final project grade

depends on teamwork. Failures to cooperate with other team members and to invest an equitable

amount of effort can lead to undesirable outcomes, particularly when other team members raise

complaints about the non-participating members. Free-rider cases will be investigated on the project

demo day, where group members can complaint about free-rider(s), please raise the case right after

your project demo. The course instructors will verify with all your team members regarding the

validity of the complaint.

6. Submission

There are four report submissions (i.e., High-Level Design Documentation, DFD Specification

Document, UML Specification, UI Design Document, and Testing Document) and two code

submissions (i.e., GitHub Repository Creation and Final Commented Code). The submissions need

to meet the following requirements:

6.1. Report submission

Each project group should submit the softcopy of the report and the VeriGuide recipient to

Blackboard System before the deadlines. The followings are the required names of the attached

documents of different phases:

“Group** High-Level Design Document”

“Group** High-Level Design Document VeriGuide”

“Group** DFD Specification Document”

“Group** DFD Specification Document VeriGuide”

“Group** UML Specification and UI Design Document”

“Group** UML Specification and UI Design Document VeriGuide”

“Group** Testing Document”

“Group** Testing Document VeriGuide”

Please replace the “**” with your group ID.

6.2. Code submission

ALL your project stuff (including source code, images, flashes, databases files, etc.) should be

maintained with Git. Git actions play an important role in evaluating your project coding phases.

You should take advantage of the version control system to support the development and

documentation of your project. You MUST submit your project via Git, and faithfully record your

coding activities. We will NOT accept any code submissions via other approaches. Moreover, the

tutors will check your version control logs when marking your coding efforts. Please find more

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 7

information in Appendix 4 on code submission. Further information will be provided in the related

emails or information on the website.

6.3. Submission Policies

Like homework, you shall submit your project document with signed VeriGuide receipts. The

policy late submission (including VeriGuide receipt) is the same as homework. You can find the

policy on the course website. You are allowed to use AI tools, but you have to explicitly cite or

acknowledge the use of these tools.

http://proj.cse.cuhk.edu.hk/csci3100/homework.html

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 8

Appendix 1: Application Requirements

1.1. Content-Oriented Application

You are required to implement your own content-oriented application like Twitter, RedBook, and

Tik-Tok, which mainly display text, pictures and videos. Users can post and interact with different

type of messages. The following are the basic requirements and advanced suggestions.

Basic Requirements

▪ Client-server architecture

The application should follow a client-server architecture. The server should hold tweets

generated by users. Users interact with the application through the client. Note that the

techniques of implementing the client-server architecture are not limited. For example, you can

design your server as a single process and let clients interact with servers through inter-process

communication mechanisms (IPCs).

▪ Global Database

Either SQL database (e.g., MySQL, or SQLite) or NoSQL database (e.g., MongoDB, or Redis)

must be employed by your application for storing data.

▪ User Interface

Your application should at least have a clear graphical UI design. The UI should be consistent

and easy to understand. Users should be able to use the application without the help of

developers.

▪ User Management

Your application should also have basic user management functionalities. Specifically, you

should let users sign up and login/logout.

▪ Admin User

Your application should have an admin user that can view all user information and add or delete

a user if needed.

▪ User Operations

Your application should allow users to conduct the following operations:

1. Search for users

A user should be able to search for other users based on usernames or unique userIDs.

2. Follow other users

A user can follow another user by clicking a “follow” bottom. New posts of the followed

user will be pushed to the user.

3. Like/dislike a message

Each message is associated with a like counter. For each post, a user can increase/decrease

the counter by clicking the like/dislike bottom.

4. Comment a message

A user can leave a comment below a message. The comment is available to every when

reading this message.

5. Retweet a message

A user can retweet a message with the original user’s information.

6. Post a message

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 9

A user can post a message (text is ok, image and video are preferred).

7. Show other users’ tweets

For a user, the application should show all the messages that are posted by users he/she

follows as the main page.

Advanced Functionality Suggestions

You can consider implementing the following functionalities to your application after you finish all

the basic requirements:

▪ Pretty UI: You can design some cool UI animations. And consider adapt UI to your specific

content type.

▪ Message Tag: You can mark messages with tag, which can be later used for search.

▪ Privacy Control: Users can set the visibility of their tweets among their followers.

▪ User Recommendation: The application can be extended to recommend users of interest for a

user to follow.

▪ Content Recommendation: The application can be extended to recommend popular content of

interest for a user.

▪ Private Chat: The application can allow users to send private messages to each other.

▪ Higher level Content type: Of the three types of content, we prefer video the most, followed by

images, and finally text.

▪ Any other features that may make your design impressive.

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 10

1.2. Online Shopping Mall System

You are required to implement an online shopping application for a retail company. Users can

search for products, add them to their cart, and make purchases.

Basic Requirements

▪ Client-server architecture

The application should follow a client-server architecture. The server should hold all the

information of products and valid users. Users interact with the application through the client.

Note that the techniques of implementing the client-server architecture are not limited.

▪ Global Database

Either SQL database (e.g., MySQL, or SQLite) or NoSQL database (e.g., MongoDB, or Redis)

must be employed by your application for storing data.

▪ User Interface

Your application should at least have a clear graphical UI design. The UI should be consistent

and easy to understand. Users should be able to use the application without the help of

developers.

▪ You are required to implement two main pages for users, that are, product browsing page and

cart page. In the product browsing page, users can search and add products to their cart. In the

cart page, users can view all the products they have added and can remove selected products.

▪ User Management

Your application should also have basic user management functionalities. Specifically, you

should let users sign up and login/logout.

▪ Admin User

Your application should have an admin user that can view all product/user information and add

or delete products/users if needed.

▪ User Operations

Your application should allow users to conduct the following operations

1. Search for products.

▪ A product entry should contain product ID, product name, price, category,

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 11

description, and stock.

▪ A user can search for a product based on product ID and product name.

▪ A user can search by conditions such as category and price range. The system

will list all eligible products.

2. Add products to cart.

▪ A user can add a product to the cart by clicking the “Add to Cart” button on

the product entry.

▪ If the product stock is zero, the system will prompt that the product cannot be

added to the cart.

▪ When a user successfully adds a product to the cart, the product will be

displayed on his/her cart page. This information needs to be updated to the

database immediately.

3. Show selected products.

▪ A user can go to his/her cart page to view all the selected products.

4. Remove products from cart.

▪ In the cart page, a user can remove a selected product by clicking the “Remove”

button on the product entry.

▪ When a user successfully removes a product, the product will disappear from

his/her cart page. This information needs to be updated to the database

immediately.

Advanced Functionality Suggestions

You can consider implementing the following functionalities to your application after you finish all

the basic requirements:

▪ Pretty UI: You can design some cool UI animations.

▪ Simulated Payment System: Implement a simulated payment system that allows users to go

through the process of making a purchase, including entering payment information and

completing the transaction

▪ Product review and rating: Users can leave reviews and ratings for the products they have

purchased.

▪ Recommendation: Implement a recommendation system that suggests related or similar

products to users based on (1) product rating or (2) their browsing and purchase history.

▪ Order tracking: Users can track the status of their orders.

▪ Any other features that may make your design impressive.

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 12

1.3. Snake.io

Snake.io is an online io game where you play as a snake fighting to survive on a battlefield of snakes.

Eat colorful bits of food to grow bigger and take down other snakes to become an absolute unit to

be reckoned with.

https://snake.io/

Basic Requirements

▪ User Interface (Basic Game Components)

1. Menu Items: Include "Play", "Leaderboard", "Customize", "Settings", and "Exit". These

allow players to start the game, view high scores, customize their snake, adjust game

settings, and exit the game.

2. Title Screen: Displays the game's title and a brief instruction or tagline. May also include

quick access to play or customization options.

3. Characters: Players control a snake that grows as it consumes pellets. Different color and

pattern options for customization. Another moving snake controlled by the computer.

4. Game Arena: The playfield is a bounded area where snakes move around to collect pellets

and interact with other players' snakes.

5. Messages: Display the player's current length and rank during gameplay, along with other

relevant in-game messages.

▪ User Management

1. Players can play as guests or create an account for additional features like customization

and leaderboard tracking.

▪ Database

1. A global database to store player data, customization options, leaderboard information, and

game settings.

▪ Functional Requirements

1. Basic Gameplay: players control their snake within the arena, aiming to grow as long as

https://snake.io/

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 13

possible by eating pellets and defeating other players.

2. The game is over when the player's snake collides with another snake or the boundary.

3. Character Behaviors: Snakes move continuously and can change direction based on player

input. Snakes grow in length with each pellet consumed. Another snake controlled by the

computer shares the same behavior.

4. Scores: Score is based on the length of the snake and the number of other snakes defeated.

5. Game Over: The game ends when the player's snake collides with another snake or

boundary, with a display showing the player's final length and rank.

6. Levels: but continuous gameplay with increasing difficulty as the snake grows longer.

Advanced Functionality Suggestions

▪ Power-Ups: Special items that give temporary advantages, like speed boosts or invincibility.

▪ Event Modes: Special limited-time game modes with unique themes or rules.

▪ Multiplayer Features: Options for playing with friends or in specific groups.

▪ 3D game.

▪ Mouse mode vs. Keyboard mode.

▪ Complex arena.

▪ Any other features that may make your design impressive.

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 14

1.4. Gobang

Gobang, or Gomoku, Five in a row is a classic strategy board game on a Go board. Players

alternate turns placing a stone of their colour on an empty intersection. The side that first forms

five consecutive pieces of the same colour on the horizontal, vertical, and diagonal directions of

the board is the winner. For more details, please refer to https://en.wikipedia.org/wiki/Gomoku.

Basic Requirements

▪ Components

1. Either Command-Line Interface (CLI) or Graphical User Interface (GUI)

2. A 19×19 Goboard

3. Two Players

4. Different Stones for different Players

▪ Player Type

1. Game of two human players

a. Players are connected via a server (either local or remote), and each player has a

separate game window.

2. Game of one human player and one random player (a machine agent that places a stone

randomly)

▪ User Management

1. Users are required to sign up / log in before the game. Only user name and password are

needed. The score of the user is initialized.

2. Upon login, the game shows a main page, including a “start new game” panel and “view

game record” panel. Users can view the game record with the following attributes:

o Start time

o Elapsed time

o Player Names

o Winner

o Final Goboard with stones

▪ General Game Logics

1. Users select player types (human vs human, or human vs machine).

2. Assign users with stones.

3. Player move: Player can place a stone to a non-occupied position within the goboard. After

a player places a stone, the stone is rendered correctly. Then, another player takes the turn

https://en.wikipedia.org/wiki/Gomoku

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 15

to place another stone.

4. Gameover: When a player gets “five in a row”, the game ends, and the player wins the

game. The game returns to the main page.

5. (Only appliable to a game of two human players) Allow retracting a false move: Player

can retract a false move after seeking agreement from another human player. Show a

“Retract move” button.

6. Score system: users win scores upon winning the game, lose scores upon losing the game.

7. Chat system: users are able to chat during the game.

8. During the game, show the following information with clear UI design:

a. Start time

b. Elapsed time

c. Current player (name) and its stone type

d. Player scores

e. Current Goboard with stones

Advanced Functionality Suggestions

In the advanced requirement part, you are welcome to further enrich the game with the following

details:

▪ Support (some of) the functionalities in more complicated game control:

a. Add friends and further invite friends to a game

b. Early Termination of the Game (e.g., “open 4” 活四, double "open 3s" 雙活三)

c. Time control. For example, each player has a main time limit, say 20 minutes to make

decisions on all their moves. Once a player uses up their main time, they enter into the

elegant time period. This is often a series of fixed time intervals, like 30 seconds per

move.

▪ Gobang is not a balanced game for two players. In modern competitions, there are forbidden

moves that Black cannot play during the game. Hence, you can detect and disallow (some

of) the forbidden moves. Here are some useful resources:

o (In Chinese) 中國五子棋競賽規則

http://ku10.com/resources/PDF/%E4%B8%AD%E5%9B%BD%E4%BA%94%E

5%AD%90%E6%A3%8B%E7%AB%9E%E8%B5%9B%E8%A7%84%E5%88

%99-2013.pdf

o “Variants” Part in Wikipedia: https://en.wikipedia.org/wiki/Gomoku

▪ Implement Game AI with (some of) the following techniques:

o Rule-based AI

o Advanced Techniques, e.g. alpha-beta pruning. You may also propose other methods.

o Invoking API of Large Language Models (LLMs), such as GPT-3.5-turbo from

OpenAI (https://platform.openai.com/docs/api-reference). Encode the game

information as a prompt, and ask a LLM to return the location to place the stone.

▪ Implement admin users that can view user records and delete users.

▪ Sound effects of the game

▪ Good UI Design

▪ Any other features that may make your design impressive.

http://ku10.com/resources/PDF/%E4%B8%AD%E5%9B%BD%E4%BA%94%E5%AD%90%E6%A3%8B%E7%AB%9E%E8%B5%9B%E8%A7%84%E5%88%99-2013.pdf
http://ku10.com/resources/PDF/%E4%B8%AD%E5%9B%BD%E4%BA%94%E5%AD%90%E6%A3%8B%E7%AB%9E%E8%B5%9B%E8%A7%84%E5%88%99-2013.pdf
http://ku10.com/resources/PDF/%E4%B8%AD%E5%9B%BD%E4%BA%94%E5%AD%90%E6%A3%8B%E7%AB%9E%E8%B5%9B%E8%A7%84%E5%88%99-2013.pdf
https://platform.openai.com/docs/api-reference

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 16

Appendix 2: Application Requirement Checklists

1. Content-Oriented Application

Functionality Requirements Points

(70 Total)

Application Architecture

Client-Server Architecture A client-server architecture that can support

multiple clients.

4’

User Interface

Graphic UI Design A graphical user interface. 5’

Database

Database Integration Integrate a global database like MySQL. 4’

User Management

User signup Create a new user profile. 4’

User Login & Logout Let user login and logout your application.

Users should be able to conduct more

operations after login.

4’

Admin User

Admin user interface The admin user should have different

interface from normal users.

5’

List all users The admin user should be able to access the

information of all users.

4’

Delete users The admin user should be able to delete

users.

4’

Application Requirements

Search for users A user can search for other users with

usernames or unique userIDs.

5’

Follow other users A user can follow another user by clicking a

“follow” bottom.

5’

Like/Dislike messages Each message is associated with a like

counter. For each message, a user can

increase/decrease the like counter by 1 by

clicking the like/dislike bottom. Each user

can either like or dislike a message.

6’

Comment messages A user can leave comments below messages.

The comment is available to everyone when

reading this message.

5’

Post messages A user can post a message with images. 5’

Retweet messages A user can retweet a message with the

original author’s information

5’

Show following user

messages

For a user, the application should show

messages of users he/she follows on the main

5’

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 17

page.

2. Online Shopping Mall System

Functionality Requirements
Points

(70 Total)

Application Architecture

Client-Server Architecture
A client-server architecture that can support

multiple clients.
4’

User Interface

Graphic UI Design A graphical user interface. 5’

Two main pages
Product browsing product page and cart

page.
5’

Database

Database Integration Integrate a global database like MySQL. 4’

User Management

User signup Create a new user profile. 4’

User Login & Logout

Let users login and logout your application.

Users should be able to conduct more

operations after login.

4’

Admin User

Admin user interface
The admin user should have a different

interface from normal users.
4’

List all products/users
The admin user should be able to access the

information of all products/users.
4’

Delete products/users
The admin user should be able to delete

products/users.
4’

Application Requirements

Search for product

1) A product entry should contain product

ID, product name, price, category,

description, and stock.

2) A user can search for a product based on

product ID and product name.

3) A user can search by conditions such as

category and price range.

4) 3’

5) 4’

6) 4’

Select products

1) A user can select a course by clicking

the “Select” button.

2) If the product stock is zero, the system

will prompt that the product cannot be

added to the cart.

3) The selected product should be

displayed on the cart page. This

information needs to be updated to the

database immediately.

4) 3’

5) 3’

6) 4’

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 18

Show selected products
All the selected products should be shown on

the cart page.
4’

Remove products

1) A user can remove a selected product by

clicking the “Remove” button on the

product entry.

2) The dropped product will disappear

from the cart page. This information

needs to be updated to the database

immediately.

3) 3’

4) 4’

3. Snake.io

Functionality Requirements Points

(70 Total)

Database

Database Integration Integrate a global database like MySQL. 2’

User Management

User signup Create a new user profile. 4’

User Login & Logout Let user login and logout your application.

Users should be able to conduct more

operations after login.

4’

Application Requirements

Main window A main window appears after the program is

launched. The window contains menu items

and a playfield.

2’

Menu items "Reset" menu item restarts the game.

"Clear High Score" erases the high score

record. "Exit" causes the program to quit.

They are functional at any time.

6’ (3 * 2’, each

menu item takes

up 2 points)

Title screen When the main window is shown, a title

screen is automatically displayed within the

playfield. The title screen should contain

the name (preferably the logo) of the game,

and an instruction telling player how to start

and operate the game.

3’

Basic rendering An arena, snakes and pallets. 6’

Text The current player's score and highest scores

are displayed at the top of the playfield. In

the lower-left corner the number of snakes is

drawn, displaying the number of lives left.

3’

Gameplay Mechanics Control of the snake, movement mechanics,

pellet consumption, enemy snake behaviors,

and game status updates.

 15’

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 19

Animations When the characters are moving, they are

rendered as animations (changing pictures

like .gif) instead of still images. If the snake

stops moving, its image becomes still.

4’

Behavior of enemies The enemy snakes keep moving in the arena

and will avoid the boundaries of the arena or

the player. It will also consume pallets.

3’

Game status Game score, high score and lives left are

updated and rendered correctly. The high

score is kept in a persistent way so that it

won't be lost as the program exits. Game

status is initialized whenever a new game is

started.

3’

Gameover When all enemies die, a congratulation

screen is displayed. If all lives are lost, a

gameover screen is displayed. In either case,

the player can dismiss the screen by hitting a

key and the game goes back to the title

screen.

3’

Levels At least three levels (from easy to difficult). 12’ (3 * 4’, each

level takes up 4

points)

4. Gobang

Functionality Requirements Points

(70 Total)

Database Integration

Database Integration Integrate a global database, e.g. MySQL,

MongoDB

4’

Players

Two human players Support two-human player game. Players are

connected via a server (either local or

remote), and each player has a separate game

window.

10’

Random Player Support the game between a human player

and a random player

5’

User Management

User signup Create a new user profile. Only user name 4’

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 20

and password are needed.

User Login & Logout Let users login and logout in your game.

Users should be able to conduct more

operations after login.

4’

View Game Records Users can view the game record with the

following attributes: start time, elapsed time,

player names, winner, and the final Goboard

with stones.

5’ (1’*5)

UI Design

Upon Login

Upon login, show the main page with two

panels: “start new game”, “view the game

records”.

4 (2’ * 2)

During the game During the game, display a 19x19 Goboard,

current player and its stone type, all player

scores, start time, elapsed time. The

information should be presented clearly and

correctly.

10’ (2’ * 5)

Game Logics

Player move After a player places a stone, the stone is

rendered correctly. Meanwhile, different

players have different stones.

6’

Gameover When a player forms five consecutive pieces

of the same color on the horizontal, vertical,

and diagonal directions, the game ends. The

game returns to the main page.

6’

Retract a false move In a game of two human players, one player

can retract a false move after seeking

agreement from another human player.

6’

Chat System Players are able to send and receive chat

messages from each other during the game.

6’

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 21

Appendix 3: Guidance for Documentation

A total of four documents (i.e., a High-Level Design Document, a DFD Specification Document, a

UML Specification and UI Design Document, and a Testing Document) will be submitted by each

project team. The reports should be submitted by the whole team (one report per team) and all team

members will have the same score for a report.

Each document should contain three parts: a cover page, a table of contents, and detailed contents.

The Cover page must contain the following information

▪ Name of Document

▪ Project Title (You can freely name your own project)

▪ Document Version Number

▪ Printing Date

▪ Group ID

▪ Group member names and SIDs

▪ Department & University

3.1. High-Level Design Document Outline (Main body no

more than 5 pages)

The high-level design document is mainly focused on the purpose of the application you are

designing and its high-level descriptions. You should describe the objectives, features, and

architectural designs of your project. The recommended outline is listed as follows.

1 INTRODUCTION

1.1 Project Overview

1.2 System Features

2 SYSTEM ARCHITECTURE

 2.1 Technologies

Database, UI, Programming Language, …

 2.2 Architecture Diagram

What components do you have in your applications? How they interact with each other?

 2.3 System Components

 Describe your architecture diagram.

3.2 DFD Specification Document (Main body no more than 10

pages)

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 22

In this document, you should describe the system specification of your project with data flow

diagrams (DFDs). You should use DFDs to introduce the operational specification of your

applications. Specifically, you can first describe the high-level context diagram of the entire system.

Then you can refine the high-level DFD by describing more features of your selected application.

The following is the recommended outline:

1 High-Level Context Diagram

2 Feature Diagrams

 2.n Feature-n

 2.n.1 Description (A brief description of the feature.)

 2.n.2 DFD

3.3 UML Specification and UI Design Document (Main body

no more than 20 pages)

In this document, you should specify your application components with UML diagrams and design

your graphic user interfaces with a UI design document.

▪ Detailed description of components by UMLs

In this section, you should use UMLs to provide detailed descriptions of at least the key

components. Contents that you should concern in this section: UML diagrams (including use-

case diagrams, class diagrams, and sequence diagrams) of the major class, functionality of the

component, list of major functions, etc.

▪ User Interface Design

In this section, you should present the UI of your project. This section could be like a user

manual of your project. You should teach and guild the users by walking through your UI

operations. The use of screenshots is needed to indicate your UI overview and the result after

certain user actions.

The recommended outline is described as follows:

1 UML DESIGN

1.n Component-n

1.n.1 Structural Diagram

1.n.2 UMLs

1.n.3 Functionality

1.n.4 Procedures and Functions

2 UI DESIGN

 2.n View-n

 2.n.1 Description of the view

 2.n.2 Screen Images

 2.n.3 Objects and Actions

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 23

3.4 Testing Document (Main body no more than 15 pages)

In this document, you should present the test plan, test case design, and test result of your project.

Your document should contain a test plan section and a test cases section. In the test plan sub-

section, you should contain your test approaches (e.g., black or/and white box testing), features to

be tested (e.g., the rules of Gobang), testing tools (e.g., gtest for C++), if any, and the testing

environment (the hardware and software requirements). In the test cases section, you should concern

the objective of each test case, input, expected outputs, Pass/Fail criteria, and so on. The following

is the recommended outline:

1 TEST PLAN

2 TEST CASES

 2.n Case-n

 2.n.1 Purpose

 2.n.2 Inputs

 2.n.3 Expected Outputs & Pass/Fail Criteria

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 24

Appendix 4: Guidance for Code Submission

You MUST submit your project via github.com, and faithfully record your coding activities.

1. Create a GitHub account (if you don’t have one)

GitHub is the leading code management platform worldwide. If you do not have an account, you

can navigate to https://github.com and Sign up.

2. Create a new repository

To facilitate submission, you are required to set up a git repository on GitHub.com.

Click the “+” on the upper right corner of GitHub, and click “New repository”

Then enter the name of your repository and choose the visibility. You can set up either public or

private repository. For public repository, you need to submit HTTPS URL of your repository

(e.g., https://github.com/yttty/my-awsome-project.git). For private repository, you need to

follow the guide below to add ssh key and submit SSH URL of your repository (e.g.,

https://github.com/
https://github.com/yttty/my-awsome-project.git

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 25

git@github.com:yttty/my-awsome-project.git).

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 26

You are required to submit the HTTPS URL or SSH URL of your repository to the Google form

https://forms.gle/PPRAzpJkS63JGcDF8 before the Phase 2 due (i.e., 24 Feb.). As specified in the

project specification, we will pull the latest code on the due date of Phase 2 and Phase 5.

https://forms.gle/PPRAzpJkS63JGcDF8

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 27

3. Add deploy key to the private repository

If you choose to create a private repository, you need to add deploy key to your project so that TAs

can access your code. Please be reminded the member capacity of a private repository of a free

account is limited to 3. You should apply for Student Account to increase the member capacity to

enable everyone to contribute code.

First, download the key from the course website

http://proj.cse.cuhk.edu.hk/csci3100/assets/project/keys_2024_pub.zip; extract the zip file; open

the public key of your group with a text editor and copy the corresponding public key of your

group. Please ensure you add the right public key, otherwise TAs cannot access your private

repository.

Then, go to your GitHub repository, navigate to settings->Deploy keys->Add deploy key

Paste the public key you just copied, then click Add key.

https://education.github.com/discount_requests/new
http://proj.cse.cuhk.edu.hk/csci3100/assets/project/keys_2024_pub.zip

CSCI3100 Software Engineering, Dept. of CSE, The Chinese University of Hong Kong

 28

4. References

- If you are new to git, start with this simple guide.

- The official git documentation: https://git-scm.com/documentation.

- Git and GitHub Tutorial https://www.youtube.com/watch?v=xuB1Id2Wxak

http://rogerdudler.github.io/git-guide/index.html
https://git-scm.com/documentation
https://www.youtube.com/watch?v=xuB1Id2Wxak

	1. Objective
	2. Project Grouping
	3. Project Requirements
	4. Project Phases:
	5. Grading Criteria:
	6. Submission

